Figure 1 shows the results of such a reconstruction of heat fluxes using Eq. (27).

Curve 4, calculated for Ry * 1 mm and R; = 3 mm, measured from the surface of the plate

x = 0, practically coincides with the reference curve 1 constructed by using Eq. (29). The
agreement at early times is somewhat worse for curves 2, 3, and 5 calculated with R; = 1 mm
and Rz = 5 mm, Ry = 2 mm and R = 5 mm, and Ry = 3 mm and R, = 5 mm, respectively. It is
clear that this can account for the less accurate approximation of the temperature distribu-
tion at x = 0, For t > 0.1 sec, however, all the results are close, and the proposed method
of calculating heat fluxes can be used in practice. ’

NOTATION

p, density, kg/m®; C, specific heat, J/kg+°C; T, time, sec; A, thermal conductivity,
W/me°C; x, running coordinate, m; t, temperature, °C; to, initial temperature, °C; do,
thermal diffusivity, m®/sec; q, heat flux, W/mZ.
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PROPAGATION OF HEAT WITH A VARIABLE RELAXATION PERIOD
P. V. Cherpakov UDC 532.24.02

We present an exact solution of the hyperbolic heat-conduction equation for a
variable velocity of heat transport.

According to the hypothesis of the finite velocity of heat transport developed by Lykov
[1] we have a hyperbolic heat-conduction equation

0%u ou d%u
; 2 , (1)
or T o T o

where ty is the relaxation period in hours, g® is the thermal diffusivity, and wq = Va’/tr
is the velocity of propagation of heat.

If ty and a® are constants, wq is a finite velocity. Under these assumptions we solve
certain problems related to Eq. (1) which can be found in [2-4].

Norwood [5] investigated variable values of t,, and Samarskii and Sobol' [6] used a
computer to study temperature waves,

We assume that ty varies linearly with the time. This case leads to an exact solution
of Eq. (1) for many boundary-value problems.

N We set
t, =2t b, (2)

where b is a positive constant. Then the substitution £® = 2t + b reduces Eq. (1) to the
familiar form
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Solutions of Eq. (1) can be found from solutiomns of (3).

Using D'Alembert's method we find the solution of the Cauchy problem for Eq. (1), de-
termined by the initial conditions

Ux,0)=f(x), U,(x,0)=F(x), (4)
where f(x) and F(x) are given functionms.

The solution is obtained in the form

\ VE [
U(x't)zf(y);rf(yz)+ f fF(c)dc, )
Y,

where
fp=x—aVU+b—aVb, y=x+aV2+b—aVb .

If we compare solution (5) with the solution of a similar problem [7] for constant tyr,
we see that (5) expresses the propagation of temperature in an unbounded one-dimensional
space considerably more simply and clearly.

If we consider a problem with the boundary conditions
Uuo,H=0, UlH=0, (6)

retaining the initial conditions (4) and specifying the functions f£(x) and F(x) in the in-
terval 0 < x < 7, its solution is given by the series

Uxt)= 2 (a,cosah, V2t +b +b,sinar, V2t +b)sink,x, M
. n=9%
where a, and b, are determined by the initial conditions (4).

For comparison with solution (7) we present the solution of a similar problem for con-
stant ty which we write in the form

U(x,t) =exp(—1/2¢) 2 (A, cosp,t + B, sinp, f)sinA,x, (8)
n=0
where
nx

Mo =Vwhl—1/4t , b =T

The coefficients Ap and B, are also determined by Eqs. (4).

It is clear that solution (8) for a constant relaxation period characterizes the tem-
perature as decreasing with time, and solution (7) expresses a wave process of heat trans-
port for variable relaxation.

'LITERATURE CITED

1. A. V. Lykov, Inzh.-Fiz. Zh., 9, No. 3 (1965).

2. M. S. Smirnov, Inzh.-Fiz. Zh., 9, No. 3 (1965).

3. B. M, Raspopov, Inzh.-Fiz. Zh., 12, No. 4 (1967).

4. P. V. Cherpakov and N. G. Shimko, Inzh.-Fiz. Zh., 21, No. 1 (1971).

5. F. R. Norwood, Trams. ASME, J. Appl. Mech., 94, 673 (1972).

6. A. A. Samarskii and I. M. Sobol', Zh. Vychisl. Mat. Mat. Fiz., 3, No. 4 (1963).

7. V. I. Levin and Yu. I. Grosberg, Differential Equations of Mathematical Physics [in
Russian], GITI, Moscow (1951).

1102



