Figure 1 shows the results of such a reconstruction of heat fluxes using Eq. (27). Curve 4, calculated for $R_{1}=1 \mathrm{~mm}$ and $R_{2}=3 \mathrm{~mm}$, measured from the surface of the plate $x=0$, practically coincides with the reference curve 1 constructed by using Eq. (29). The agreement at early times is somewhat worse for curves 2 , 3 , and 5 calculated with $R_{1}=1 \mathrm{~mm}$ and $R_{2}=5 \mathrm{~mm}, R_{1}=2 \mathrm{~mm}$ and $R_{2}=5 \mathrm{~mm}$, and $R_{1}=3 \mathrm{~mm}$ and $R_{2}=5 \mathrm{~mm}$, respectively. It is clear that this can account for the less accurate approximation of the temperature distribution at $x=0$. For $\tau>0.1 \mathrm{sec}$, however, all the results are close, and the proposed method of calculating heat fluxes can be used in practice.

## NOTATION

$\rho$, density, $\mathrm{kg} / \mathrm{m}^{3} ; \mathrm{C}$, specific heat, $\mathrm{J} / \mathrm{kg} \cdot{ }^{\circ} \mathrm{C} ; \tau$, time, sec; $\lambda$, thermal conductivity, $\mathrm{W} / \mathrm{m} \cdot{ }^{\circ} \mathrm{C}$; x , running coordinate, m ; t , temperature, ${ }^{\circ} \mathrm{C}$; $\mathrm{t}_{0}$, initial temperature, ${ }^{\circ} \mathrm{C}$; $\alpha_{0}$, thermal diffusivity, $\mathrm{m}^{2} / \mathrm{sec} ; \mathrm{q}$, heat flux, $\mathrm{W} / \mathrm{m}^{2}$.

## LITERATURE CITED

1. G. M. Fikhtengol'ts, A Course in Differential and Integral Calculus [in Russian], Vol. 3, Fizmatgiz (1966).
2. A. N. Tikhonov and A. A. Samarskii, Equations of Mathematical Physics, MacMillan, New York (1963).
3. V. L. Sergeev, Vestsi Akad. Navuk Belorussian SSR, Ser. Fiz.-Energ. Navuk, No. 2 (1972).

## PROPAGATION OF HEAT WITH A VARIABLE RELAXATION PERIOD

P. V. Cherpakov

UDC 532.24 .02

We present an exact solution of the hyperbolic heat-conduction equation for a variable velocity of heat transport.

According to the hypothesis of the finite velocity of heat transport developed by Lykov [1] we have a hyperbolic heat-conduction equation

$$
\begin{equation*}
t_{r} \frac{\partial^{2} u}{\partial t^{2}}+\frac{\partial u}{\partial t}=a^{2} \frac{\partial^{2} u}{\partial x^{2}} \tag{1}
\end{equation*}
$$

where $t_{r}$ is the relaxation period in hours, $a^{2}$ is the thermal diffusivity, and $w_{q}=\sqrt{a^{2} / t_{r}}$ is the velocity of propagation of heat.

If $t_{r}$ and $a^{2}$ are constants, $w_{q}$ is a finite velocity. Under these assumptions we solve certain problems related to Eq. (1) which can be found in [2-4].

Norwood [5] investigated variable values of $t_{r}$, and Samarskii and Sobol' [6] used a computer to study temperature waves.

We assume that $t_{r}$ varies linearly with the time. This case leads to an exact solution of Eq. (1) for many boundary-value problems.
A We set

$$
\begin{equation*}
t_{r}=2 t+b \tag{2}
\end{equation*}
$$

where $b$ is a positive constant. Then the substitution $\xi^{2}=2 t+b$ reduces Eq. (1) to the familiar form

Lenin Komsomol Voronezh State University. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 33, No. 3, pp. 517-518, September, 1977. Original article submitted October 8, 1976.

$$
\begin{equation*}
\frac{\partial^{2} U}{\partial \xi^{2}}=a^{2} \frac{\partial^{2} U}{\partial x^{2}} . \tag{3}
\end{equation*}
$$

Solutions of Eq. (1) can be found from solutions of (3).
Using D'Alembert's. method we find the solution of the Cauchy problem for Eq. (1), determined by the initial conditions

$$
\begin{equation*}
\dot{U}(x, 0)=f(x), \quad U_{t}(x, 0)=F(x), \tag{4}
\end{equation*}
$$

where $f(x)$ and $F(x)$ are given functions.
The solution is obtained in the form

$$
\begin{equation*}
U(x, t)=\frac{f\left(y_{1}\right)+f\left(y_{2}\right)}{2}+\frac{\sqrt{b}}{a} \int_{y_{1}}^{u_{2}} F(\zeta) d \zeta, \tag{5}
\end{equation*}
$$

where

$$
y_{1}=x-a \sqrt{2 t+b}-a \sqrt{b}, \quad y_{2}=x+a \sqrt{2 t+b}-a \sqrt{b} .
$$

If we compare solution (5) with the solution of a similar problem [7] for constant $t_{r}$, we see that (5) expresses the propagation of temperature in an unbounded one-dimensional space considerably more simply and clearly.

If we consider a problem with the boundary conditions

$$
\begin{equation*}
U(0, t)=0, \quad U(l, t)=0, \tag{6}
\end{equation*}
$$

retaining the initial conditions (4) and specifying the functions $f(x)$ and $F(x)$ in the interval $0<x<\eta$, its solution is given by the series

$$
\begin{equation*}
U(x, t)=\sum_{n=0}^{\infty}\left(a_{n} \cos a \lambda_{n} \sqrt{2 t+b}+b_{n} \sin a \lambda_{n} \sqrt{2 t+b}\right) \sin \lambda_{n} x, \tag{7}
\end{equation*}
$$

where $a_{n}$ and $b_{n}$ are determined by the initial conditions (4).
For comparison with solution (7) we present the solution of a similar problem for constant $t_{r}$ which we write in the form

$$
\begin{equation*}
U(x, t)=\exp \left(-t / 2 t_{r}\right) \sum_{n=0}^{\infty}\left(A_{n} \cos \mu_{n} t+B_{n} \sin \mu_{n} t\right) \sin \lambda_{n} x, \tag{8}
\end{equation*}
$$

where

$$
\mu_{n}=\sqrt{w_{q} \lambda_{n}^{2}-1 / 4 t_{r}}, \quad \lambda_{n}=\frac{n \pi}{l} .
$$

The coefficients $A_{n}$ and $B_{n}$ are also determined by Eqs. (4).
It is clear that solution (8) for a constant relaxation period characterizes the temperature as decreasing with time, and solution (7) expresses a wave process of heat transport for variable relaxation.

## LITERATURE CITED

1. A. V. Lykov, Inzh.-Fiz. Zh., 9, No. 3 (1965).
2. M. S. Smirnov, Inzh.-Fiz. Zh., 9, No. 3 (1965).
3. B. M. Raspopov, Inzh.-Fiz. Zh., 12, No. 4 (1967).
4. P. V. Cherpakov and N. G. Shimko, Inzh.-Fiz. Zh., 21, No. 1 (1971).
5. F. R. Norwood, Trans. ASME, J. Appl. Mech., 94,673 (1972).
6. A. A. Samarskii and I. M. Sobol', Zh. Vychisi. Mat. Mat. Fiz., 3, No. 4 (1963).
7. V. I. Levin and Yu. I. Grosberg, Differential Equations of Mathematical Physics [in Russian], GTTI, Moscow (1951).
